UML Model Refactoring

Viktor Stojkovski

University of Antwerpen, Faculty of Computer Science, Masters of Software Engineering
January, 2013, Belgium

Email: Viktor.Stojkovski@student.ua.ac.be

fppt.com

—

Introduction to UML Model
Refactoring

« Because of constant evolution, systems
must be modified and evolve

* There Is no precise validation whether the
modifications won’t change the system
behavior

* Necessity of basic set of model
transformations (refactorings)

M

—

Main goal of the project

» Create UML Statechart refactoring rules
using the defined transformations in the
article Refactoring UML Models

* Define GraphGrammar rules using the
Meta-Modeling software AToM3

- Sunye, G., Pollet, D., Traon, Y. L., Jezequel, J.-M., 2001. Refactoring UML Models. Springer.

. - http://atom3.cs.mcgill.ca/ m

—

Working process(1)

1. Reading and understanding the defined
rules and the OCL (Object Constraint

Language) constraints

2. Create a testing model in AToM? using
the DCharts as formalism

Group States model example

Feng, H., 2004. Dcharts, a formalism for modeling and simulation based
_ design of reactive software systems m

—

Working process(2)

3. Specify the grammar by creating the rules
— LHS and RHS

|frcrr

Group States rule example

Q

Working process(3)

4. Add conditions to the rules as pre-
conditions and actions as post-conditions

5. Program the pre and post conditions In

Python

foldIncomingActionsCond(self, graphID, statelabel):
state = self.getMatched(graphID, self.LHS.nodeWithLabel(statelLabel))
enterAction = state.enter_action.toString().strip()
compare if all the input transitions actions are the same
allInTransActSame = compareTransAct(state, “in")
get the number of incoming transitions, their number should be larger that
nrInTrans = countTrans(state, "in")
empTrans = emptyTransition(state, "in")
the condition will be satisfied if the state has no entry action, all the
are the same, the number of transitions is larger than 1 and the actions a
¥ empty fields
if not enterAction and allInTransActSame and nrInTrans > 1 and not empTrans:
return 1
else:
return @

foldIncomingActions(self, graphID, statelabel):

state = self.getMatched(graphID, self.LHS.nodeWithLab
action = getActFromTrans(state, “in")

transitions = []

state.enter_action.setValue(action)

for trans in state.in_connections_:
if isinstance(trans, Hyperedge):
for checkState in trans.in_connections_:
if isinstance(checkState, Basic):
transitions.append(trans)
deleteActFromTrans(transitions)

Precondition for the Fold Incoming Actions rule

Acton for the FIA rule

B
Working process(4)

6. Organizing the rules in the grammar by
giving them priorities

— The order of the rules is very important
(explanation!?)

7% Editing GrathrammarEdL I.d_:h‘l

WARNING: Name must use Python variable syntax
Name I DChartsGrammar
nitial&ction [— Enabled?

New il

inal&ction [Enabled?

Hierarchy of the rules in the GG

M

—

Working process(5)

/. Executing the grammar

8. Analyzing the results:

— Does the execution of the grammar over the
statechart give the expected results?

— Is the model behavior preserved?

Composite2

Bagic3
) Compaosite0
Composite1

Basic0

Basic1

Example of the Group State rule execution

—

Presentation of an example
from the practical work of the
project

» Refactoring a Statechart diagram that is
modeling a phone call

« Explanation of the refactoring process
through an examples

« Comparing the results of the refactoring to
the theoretical results from the article

Sunye, G., Pollet, D., Traon, Y. L., Jezequel, J.-M., 2001. Refactoring UML Models

—

Conclusion

 After testing the refactoring grammar on a
number of UML Statechart models the results
were satisfactory

 Room for improvements:

— More wide-ranging pre and post conditions
covering all of the states in which the model
can be

— Inventing new and expanding the already
specified refactoring rules (example with the
extension of the Move State out of Composite

rule) 5

—

References

* Feng, H., 2004. Dcharts, a formalism for modeling and simulation
based design of reactive software systems. A Masters Thesis

« OMG, 2009. OMG Object Constraint Language (OCL). OMG

« Selic, B., 2009. Unified Modeling Language Specification (version
2.1). OMG

* Sunye, G., Pollet, D., Traon, Y. L., Jezequel, J.-M., 2001.
Refactoring UML Models. Springer

 Yang, M., Michaelson, G. J., Pooley, R. J., 2008. Formal action
semantics for a UML action language. Journal of Universal
Computer Science

* http://atom3.cs.mcgill.ca/

M

—

Questions & Discussion

